Tag Archives: hydraulic blade

China OEM Competitive Cat Blade Hoist Cylinder 9t2869/G D10t Aftermarket Hydraulic Cylinder with Good quality

Product Description

Product Information

Competitive CaterpilIIar Blade Hoist Cylinder 9T2869/G  D10T

Working temperature -40°C ~ 80°C
Color RAL9005,Customize
Material CK45,ST52,ST52-3,27SiMn,Customize
Seal kit SKF, Trelleborg, Halite, Chesterton, NOK, Kayaba
Piston rod Hard chromed
Packaging Plywood case
Warranty 12 months
Payment T/T

 

Part NO. Name of Commodity & Specification Model Measurement(CMS) Volume Net Weight(kg) Gross WT (kg)
Length Width Height Unit Total Unit Total
9T2869/G CaterpiIIar Blade Hoist Cylinder 9T2869/G D10T  225.00  43.00  52.00  0.5 280.00  280.00  340.00  340.00 

Popular Cylinder Type and Part No. for Mining Haul Truck
 

Item
No.
Part NO.

Name of Commodity & Specification

Model
1 EJ6895/G Front Suspension ASSY/830E Dump Truck 830E
2 EM8840/G Rear Suspension ASSY/830E Dump Truck
3 EM8354/G Hoist Cylinder ASSY/830E Dump Truck
4 EL7952/G Steering Cylinder ASSY/830E Dump Truck
5 9T2869/G Blade Hoist Cylinder  D10T
6 2320652/G Blade Tilt Cylinder LH
7 2320653/G Blade Tilt Cylinder RH
8 19926445/G Ripper Lift Cylinder RH
9 19926446/G Ripper Lift Cylinder LH
10 4T9977/G Ripper Tilt Cylinder 
11 252571/G Blade Hoist Cylinder D11T
12 3672259 /G Blade Tilt Cylinder LH
13 3672258 /G Blade Tilt Cylinder RH
14 1616616/G Ripper Lift Cylinder LH
15 1616615/G Ripper Lift Cylinder RH
16 1306381/G Ripper Lift Cylinder LH
17 1303263/G Ripper Lift Cylinder RH

Advantage

Better designs, better material, better value.
ROCA hydraulic cylinders are designed with rugged features to give unequaled service life and performance.
 
Mining equipment is continually subjected to torturous conditions that punish hydraulic cylinders. These difficult conditions include dust, grit, heat, cold, and moisture. Besides, the equipment is subject to slamming loads and mechanical impacts.
 
ROCA designs and manufactures excavators, dumper trucks, and heavy-duty hydraulic cylinders that endure these very difficult conditions. 

Show

Shipment

Company Information

HangZhou Roca is a comprehensive manufacturing enterprise engaged in hydraulic cylinders, excavator attachment, metal casting, hydraulic components with certification approval to meet custom or OEM requirements.
 
ROCA owned factory offers customers effective-cost products with quality assurance. With its professional and experienced R&D team, ROCA Hydraulic devotes itself to research and development to optimize products applied in construction, mining, waste management, forestry, agriculture, etc.
 

 

Hydraulic cylinders are the most effective and efficient method of pushing, pulling, lifting, and lowering. 

 

Nowadays hydraulic cylinders play an essential role in daily application and industry: 
√ Mining
√ Earthmoving & Construction
√ Agriculture &Forestry
√Waste Management & Material Handing
√Ship crane & offshore

 

Selecting the right cylinders for an application is critical in obtaining maximum performance and reliability.

 

ROCA team considers all your concerns to suit your hydraulic cylinder requirements. 

 

Together, we work out the best design solution for your application. 

FAQ

1. What is the Warranty Period?
Generally 12 months from the date of bill of lading. For some special machines, the warranty can be prolonged after mutual agreement.

2. Which Payment Terms Can you Accept?
1,L/C+T/T
2,L/C+D/P

3. How Is Your Delivery Time?
It depends on the type of machine. In the general circumstance, it will take more than from 30days to 90days to finish production. But we always will try our best to advance the delivery. If the material is handy, the production time will also be shortened accordingly.

4. How Soon Can You Respond to Client’s Inquiry?
As soon as we saw it, no more than 12hours.

 

How to Assemble a Pulley System

A pulley is a wheel that rotates on a shaft or shaft to support the movement of a taut cable. Pulleys allow power to be transmitted from the shaft to the cable.
pulley

Simple pulley

The simplest theory of operation of a pulley system assumes that the rope and weight are weightless and that the rope and pulley are not stretched. Since the force on the pulley is the same, the force on the pulley shaft must also be zero. Therefore, the force exerted on the pulley shaft is also distributed evenly between the 2 wires passing through the pulley. The force distribution is shown in Figure 1.
The use of simple pulleys is as old as history. Before the Industrial Revolution, people relied on muscle strength to carry heavy loads. Pulleys, levers and ramps make this possible. Today, we can see pulleys in a variety of systems, from exercise equipment to garage doors, and even rock climbers use them to help them reach greater heights. As you can see, these simple machines have been around for centuries and are used in everyday life.
Another simple pulley system is the pulley system. In this system, there is a fixed pulley at the top and a movable pulley at the bottom. The 2 pulleys are connected by a rope. This combination reduces the amount of work required to lift the load. Additionally, the ropes used in this system are usually made of rope and woven through the individual wheels of the pulley drum.
A pulley is an ingenious device that distributes weight evenly and can be used to lift heavy objects. It is easy to build and can be easily modified for a wide range of activities. Even young children can make their own with very few materials. You can also use simple household items such as washing machines, thin textbooks and even chopsticks. It’s very useful and can be a great addition to your child’s science and engineering activities.
The simplest pulley system is movable. The axis of the movable pulley can move freely in space. The load is attached to 1 end of the pulley and the other end to the stationary object. By applying force on the other end of the rope, the load is lifted. The force at the other end of the rope is equal to the force at the free end of the pulley.
Another form of pulley is the compound pulley. Compound pulleys use 2 or more wheels to transmit force. Compound pulleys have 2 or more wheels and can lift heavier objects. Dim is POLE2.
pulley

tapered pulley

It is important to clean and align the bolt holes before assembling the tapered pulley. The screws should be lubricated and the threads cleaned before installation. To install the pulley, insert it into the shaft keyway. The keyway should be aligned with the shaft hole to prevent foreign matter from entering the pulley. Then, alternately tighten the bolts until the pulley is tightened to the desired torque.
A tapered pulley is a basic structure. The pulley belt is arranged across 4 steps. Installed between the headstock casting and the main shaft, it is often used in the paper industry. It integrates with printing machinery and supports assembly lines. These pulleys are also available in metric range options, eliminating the need for ke-waying or re-drilling. They are easy to install, and users can even customize them to suit their needs.
CZPT Private Limited is a company that provides unique products for various industries. This large product is used for many different purposes. Also, it is manufactured for industrial use. The company’s website provides detailed specifications for the product. If you need a tapered pulley, contact a company in your area today to purchase a quality product!
Tapered pulleys are vital to paper mill machinery. Its special design and construction enable it to transmit power from the engine source to the drive components. The advantages of this pulley include low maintenance costs and high mechanical strength. Cone wheel diameters range from 10 inches to 74 inches. These pulleys are commonly used in paper mills as they offer low maintenance, high mechanical strength and low wear.
A tapered sleeve connects the pulley to the shaft and forms an interference fit connector. The taper sleeve is fixed on the shaft with a key, and the corresponding inner hole is fixed on the shaft with a key. These features transmit torque and force to the pulley through friction. This allows the tapered pulley to move in a circular motion. The torque transfer characteristics of this pulley are most effective in high speed applications.
The sleeve is the most important part when assembling the tapered pulley. There is an 8-degree taper inside the cone, which is closely connected to the inner surface of the pulley. Taper sleeves and pulleys are interchangeable. However, tapered pulleys can be damaged after prolonged use.
pulley

pulley pulley system

A pulley pulley system is a great way to move heavy objects. These systems have been around for centuries, dating back to the ancient Greeks. This simple mechanism enables a person to lift heavy objects. These blocks are usually made of rope, and the number of turns varies for different types of rope. Some blocks have more cords than others, which creates friction and interferes with the easy movement of the lifting system.
When using a pulley pulley, the first thing to decide is which direction to pull. Unfavorable rigging means pulling in the opposite direction. In theory, this method is less efficient, but sometimes requires a certain amount of work space. The benefit is that you will increase the mechanical advantage of the pulley by pulling in the opposite direction. So the interception and tackle system will give you more of a mechanical advantage.
Pulley pulleys are an excellent choice for lifting heavy objects. The system is simple to install and users can easily lift objects without extensive training. Figure 3.40 shows a pulley in action. In this photo, the person on the left is pulling a rope and tying the end of the rope to a weight. When the rope is attached to the load, the rope will be pulled over the pulley and pulley.
The blocks on the blocks are attached to the ends of the rope. This creates unique lifting advantages compared to single-line systems. In Figure 3, the tension of each thread is equal to one-third of the unit weight. When the rope is pulled over the pulley, the force is divided equally between the 2 wires. The other pulley reverses the direction of the force, but that doesn’t add any advantage.
Use pulleys to reduce traction and load. The weight of the load has not changed, but the length of the rope has increased. Using this method, lifting the load by pulling the rope 4 times reduces the force required to lift 1 foot. Likewise, if the pulley system had 4 pulleys instead of three, the length of the rope would be tripled.
The system can transmit loads in any direction. Rope length is determined by multiplying the distance from the fixed block to the load by the mechanical advantage. If the mechanical advantage is 3:1, then passing the rope through the pulley 3 times will produce the required traction distance. Also, the length of the rope will depend on the mechanical advantage, so if the load is 3 times the length of the rope, it will be more than 3 times the required length.

China OEM Competitive Cat Blade Hoist Cylinder 9t2869/G D10t Aftermarket Hydraulic Cylinder     with Good qualityChina OEM Competitive Cat Blade Hoist Cylinder 9t2869/G D10t Aftermarket Hydraulic Cylinder     with Good quality

China Professional CZPT Packer Blade Ejector Push out Double Acting Telescopic Hydraulic Cylinder for Heil Front Loader Garbage Truck and Waste Rubbish Compactor Refuse Bodies near me supplier

Product Description

double acting telescopic hydraulic cylinder for garbage truck and compactor

 

Product Description

 Tsingshi hydraulic Customers,  MAN, JAC, VOLVO, SHACMAN, DAF, JMC,  HUNO, CIMC, SINOTRUK, TATRA,BENS,XIHU (WEST LAKE) DIS.FENG,  FOTON,etc.

1.Each stage electroplate hard chrome;
2.lighter and easier to maintenance double acting telescopic hydraulic cylinder;
3.High quality alloy seamless steel pipe have better mechanical properties;
4.The world famous brands of seals, such as HALLITE, PARKER,etc;
5.World-class processing technology ensures stable and reliable quality.

                  

NO ITEM double acting telescopic hydraulic cylinder DATA
1 Material Carbon Steel, Alloy Steel, 27SiMn,45#,20#,etc
2 Honed tube 40-300mm, Heat treatment, honing, rolling
3 Honed tube 30-280mm, plated nickel or hard Chrome or ceramic
4 Seal kit Parker, Merkel, Hallite, Kaden, etc
5 Coating Sandblasting, primer paint, middle paint, finish paint,
Color can paint according to customer demands.
6 Technology Parker,custom hoist, hyco,HYVA, Meiller

SAT,DAT

7 Mounting type Pin-eye , flange, trunnion mount,ball mount, screw thread.
FC, FE, FEE, FSE,TPIN
8 Working medium Hydraulic Oil
9 Working pressure 16-20Mpa double action Hydraulic Cylinder
10 Temperature range -50°C to +100°C

Detailed Photos


 

Company Profile

Tsingshi hydraulic is a hydraulic telescopic cylinder for dump tipper truck company which takes up with hydraulic design, R&D, manufacturer, sell and service hydraulic products-double acting telescopic hydraulic cylinder.

-Hydraulic Cylinders Certification ISO9001 TS16949, etc;
-Double acting telescopic hydraulic cylinder Export to North America, South America, Australia, South Korea, Southeast Asia, South Africa, Europe, Middle East, etc;
-ODM&OEM double acting telescopic hydraulic cylinder according to client’s requirements;
-Professional manufacturer& supplier of Hydraulic Cylinders over 30 years;
-The Hydraulic telescopic Cylinders can be used for Dump Truck, Tipper Truck, Trailer, Agricultural Machinery, Garbage Truck,Landing Platform etc; We can produce the follow brand hydraulic cylinder. HYVA, BINOTTO, EDBRO, PENTA, MAILHOT, CUSTOM HOIST, MUNCIE, METARIS, HYDRAULEX GLOBAL, HYCO, PARKER, COMMERCIAL HYDRAULICS, MEILLER. WTJX, XT, JX, HCIC, ZX, SZ, SJ.

 

CUSTOMERS PHOTOS

 

QUALITY GUARANTEE

 

HIGH QUALITITY GUARANTEE-double acting telescopic hydraulic cylinder
-7*24 service.
-Competitive price.
-Professional technical team.
-Perfect after-sales service system.
-ODM&OEM according to customer needs.
-Strong production capacity to ensure fast delivery.
-Guarantee Quality. Every process must be inspected, all products need be tested before leaving the factory.

<Hydraulic Cylinder Leak Test

<Hydraulic Cylinder Buffer Test

<Hydraulic Cylinder Reliability Test

<Hydraulic Cylinder Full Stroke Test

<Hydraulic Cylinder Trial Operation Test

<Hydraulic Cylinder Pressure Tight Test

<Hydraulic Cylinder Load Efficiency Test
<Hydraulic Cylinder Start-up Pressure Test
<double acting telescopic hydraulic cylinder Testing the Effect of Limit

SALES AND SERVICE

 



 

PRODUCTS SERIES

 

ONE WORLD ONE LOVE

 


 

 

How to Calculate the Diameter of a Worm Gear

worm shaft
In this article, we will discuss the characteristics of the Duplex, Single-throated, and Undercut worm gears and the analysis of worm shaft deflection. Besides that, we will explore how the diameter of a worm gear is calculated. If you have any doubt about the function of a worm gear, you can refer to the table below. Also, keep in mind that a worm gear has several important parameters which determine its working.

Duplex worm gear

A duplex worm gear set is distinguished by its ability to maintain precise angles and high gear ratios. The backlash of the gearing can be readjusted several times. The axial position of the worm shaft can be determined by adjusting screws on the housing cover. This feature allows for low backlash engagement of the worm tooth pitch with the worm gear. This feature is especially beneficial when backlash is a critical factor when selecting gears.
The standard worm gear shaft requires less lubrication than its dual counterpart. Worm gears are difficult to lubricate because they are sliding rather than rotating. They also have fewer moving parts and fewer points of failure. The disadvantage of a worm gear is that you cannot reverse the direction of power due to friction between the worm and the wheel. Because of this, they are best used in machines that operate at low speeds.
Worm wheels have teeth that form a helix. This helix produces axial thrust forces, depending on the hand of the helix and the direction of rotation. To handle these forces, the worms should be mounted securely using dowel pins, step shafts, and dowel pins. To prevent the worm from shifting, the worm wheel axis must be aligned with the center of the worm wheel’s face width.
The backlash of the CZPT duplex worm gear is adjustable. By shifting the worm axially, the section of the worm with the desired tooth thickness is in contact with the wheel. As a result, the backlash is adjustable. Worm gears are an excellent choice for rotary tables, high-precision reversing applications, and ultra-low-backlash gearboxes. Axial shift backlash is a major advantage of duplex worm gears, and this feature translates into a simple and fast assembly process.
When choosing a gear set, the size and lubrication process will be crucial. If you’re not careful, you might end up with a damaged gear or 1 with improper backlash. Luckily, there are some simple ways to maintain the proper tooth contact and backlash of your worm gears, ensuring long-term reliability and performance. As with any gear set, proper lubrication will ensure your worm gears last for years to come.
worm shaft

Single-throated worm gear

Worm gears mesh by sliding and rolling motions, but sliding contact dominates at high reduction ratios. Worm gears’ efficiency is limited by the friction and heat generated during sliding, so lubrication is necessary to maintain optimal efficiency. The worm and gear are usually made of dissimilar metals, such as phosphor-bronze or hardened steel. MC nylon, a synthetic engineering plastic, is often used for the shaft.
Worm gears are highly efficient in transmission of power and are adaptable to various types of machinery and devices. Their low output speed and high torque make them a popular choice for power transmission. A single-throated worm gear is easy to assemble and lock. A double-throated worm gear requires 2 shafts, 1 for each worm gear. Both styles are efficient in high-torque applications.
Worm gears are widely used in power transmission applications because of their low speed and compact design. A numerical model was developed to calculate the quasi-static load sharing between gears and mating surfaces. The influence coefficient method allows fast computing of the deformation of the gear surface and local contact of the mating surfaces. The resultant analysis shows that a single-throated worm gear can reduce the amount of energy required to drive an electric motor.
In addition to the wear caused by friction, a worm wheel can experience additional wear. Because the worm wheel is softer than the worm, most of the wear occurs on the wheel. In fact, the number of teeth on a worm wheel should not match its thread count. A single-throated worm gear shaft can increase the efficiency of a machine by as much as 35%. In addition, it can lower the cost of running.
A worm gear is used when the diametrical pitch of the worm wheel and worm gear are the same. If the diametrical pitch of both gears is the same, the 2 worms will mesh properly. In addition, the worm wheel and worm will be attached to each other with a set screw. This screw is inserted into the hub and then secured with a locknut.

Undercut worm gear

Undercut worm gears have a cylindrical shaft, and their teeth are shaped in an evolution-like pattern. Worms are made of a hardened cemented metal, 16MnCr5. The number of gear teeth is determined by the pressure angle at the zero gearing correction. The teeth are convex in normal and centre-line sections. The diameter of the worm is determined by the worm’s tangential profile, d1. Undercut worm gears are used when the number of teeth in the cylinder is large, and when the shaft is rigid enough to resist excessive load.
The center-line distance of the worm gears is the distance from the worm centre to the outer diameter. This distance affects the worm’s deflection and its safety. Enter a specific value for the bearing distance. Then, the software proposes a range of suitable solutions based on the number of teeth and the module. The table of solutions contains various options, and the selected variant is transferred to the main calculation.
A pressure-angle-angle-compensated worm can be manufactured using single-pointed lathe tools or end mills. The worm’s diameter and depth are influenced by the cutter used. In addition, the diameter of the grinding wheel determines the profile of the worm. If the worm is cut too deep, it will result in undercutting. Despite the undercutting risk, the design of worm gearing is flexible and allows considerable freedom.
The reduction ratio of a worm gear is massive. With only a little effort, the worm gear can significantly reduce speed and torque. In contrast, conventional gear sets need to make multiple reductions to get the same reduction level. Worm gears also have several disadvantages. Worm gears can’t reverse the direction of power because the friction between the worm and the wheel makes this impossible. The worm gear can’t reverse the direction of power, but the worm moves from 1 direction to another.
The process of undercutting is closely related to the profile of the worm. The worm’s profile will vary depending on the worm diameter, lead angle, and grinding wheel diameter. The worm’s profile will change if the generating process has removed material from the tooth base. A small undercut reduces tooth strength and reduces contact. For smaller gears, a minimum of 14-1/2degPA gears should be used.
worm shaft

Analysis of worm shaft deflection

To analyze the worm shaft deflection, we first derived its maximum deflection value. The deflection is calculated using the Euler-Bernoulli method and Timoshenko shear deformation. Then, we calculated the moment of inertia and the area of the transverse section using CAD software. In our analysis, we used the results of the test to compare the resulting parameters with the theoretical ones.
We can use the resulting centre-line distance and worm gear tooth profiles to calculate the required worm deflection. Using these values, we can use the worm gear deflection analysis to ensure the correct bearing size and worm gear teeth. Once we have these values, we can transfer them to the main calculation. Then, we can calculate the worm deflection and its safety. Then, we enter the values into the appropriate tables, and the resulting solutions are automatically transferred into the main calculation. However, we have to keep in mind that the deflection value will not be considered safe if it is larger than the worm gear’s outer diameter.
We use a four-stage process for investigating worm shaft deflection. We first apply the finite element method to compute the deflection and compare the simulation results with the experimentally tested worm shafts. Finally, we perform parameter studies with 15 worm gear toothings without considering the shaft geometry. This step is the first of 4 stages of the investigation. Once we have calculated the deflection, we can use the simulation results to determine the parameters needed to optimize the design.
Using a calculation system to calculate worm shaft deflection, we can determine the efficiency of worm gears. There are several parameters to optimize gearing efficiency, including material and geometry, and lubricant. In addition, we can reduce the bearing losses, which are caused by bearing failures. We can also identify the supporting method for the worm shafts in the options menu. The theoretical section provides further information.

China Professional CZPT Packer Blade Ejector Push out Double Acting Telescopic Hydraulic Cylinder for Heil Front Loader Garbage Truck and Waste Rubbish Compactor Refuse Bodies     near me supplier China Professional CZPT Packer Blade Ejector Push out Double Acting Telescopic Hydraulic Cylinder for Heil Front Loader Garbage Truck and Waste Rubbish Compactor Refuse Bodies     near me supplier